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Abstract: This paper presents the development and simulation of a path optimization approach 
for a mobile assistive service robot equipped with a robotic manipulator arm to operate in hot 
gas chamber. The proposed control architecture integrates Model Predictive Control (MPC) 
with Jacobian-based Inverse Kinematics (IK) for enabling smooth, adaptive motion planning 
even under dynamically changing environmental conditions. A Matlab based simulation setup 
was used to verify the control approach using random disturbances to simulate real-world 
complications like payload mass variations, centre of gravity shifts, and obstacle interference. 
Results show that MPC adapts trajectories in real time. However, actuator constraints and very 
sudden changes in the environment could lead to increased deviations. Future improvements 
include refining the MPC cost function, introducing adaptive prediction horizons, and employing 
trajectory filtering to improve robustness. The presented approach forms a basis for future work 
on physical robots, with plans for implementation in the Webots simulation environment for 
digital twin creation and validation of semi-autonomous control.
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1. Introduction

Mobile service robots are frequently employed in unstructured, uncertain, and 
incontinently continuously varying environments, e.g., homes, public indoor spaces, 
or warehouses [1],[2]. These are environments with limited knowledge, in which robots 
need to operate without complete maps while reacting to unpredictable objects and 
dynamic conditions like human individuals or mobile machinery [3],[4],[5]. To support 
such movements, robots must localize themselves in real-time and modify their motion 
according to immediate sensor feedback from LiDARs or cameras [6]. Moreover, moving 
through environments also requires precision but also strong obstacle avoidance and 
smooth adjustment of trajectory [1],[4],[7]. 

In that regard, Model Predictive Control (MPC) has been a powerful and 
generic framework for autonomous robot navigation in unstructured and dynamic 
environments. The inherent power of MPC is to predict the future trajectory of the 
robot's state over a time horizon from a mathematical model and optimize control 
action accordingly with velocity, acceleration, and workspace constraint [8],[9]. 
Compared to traditional controllers, MPC is more sensitive and flexible toward 
environmental variation, and it is therefore suitable for real-time navigation in both 
indoor and outdoor settings [10]. 

MPC is currently widely used in robotics, process control, and autonomous 
vehicles due to its ability to be flexible and employ dynamic models and constraints 
as a component of the control logic. Its strength comes from its capability to adapt 
trajectories dynamically based on predictions of the future [11],[12].
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Another section discussed in this paper is the 
kinematics of the robotic arm. Kinematics is the 
study of motion without the forces responsible for it. 
Forward kinematics in robotics is the calculation of 
the position of the end-effector through known joint 
variables — rotations or displacements, for example. 
Conversely, inverse kinematics attempts to come 
up with the joint settings necessary for a desired 
position or orientation of the end-effector. While 
forward kinematics is straightforward algebraic 
mapping, inverse kinematics usually requires more 
effort due to nonlinearities, redundant solutions, 
and limited workspaces [13]. Inverse Kinematics (IK) 
refers to the mathematical process of solving joint 
angles that put a robot's end-effector at a desired 
coordinate [14],[15].

2. Case Study
This MPC form will be used for custom-built 

assistive service robot (Fig.2) control. The robot is a 
special-purpose equipment that is designed to assist 
during the decontamination process of a hot gas 
chamber (Fig.1). This service robot was developed 
specifically due to the extreme inaccessibility of the 
chamber and radiation levels in the environment. 
Consequently, the decontamination activities must 
be performed using remotely operated robotic 
equipment in semi-autonomous mode but with 
the possibility of operator intervention from remote 
locations if necessary.

Figure 2: Assistive service robot
The operation of these tasks occurs in highly 

dynamic and unstructured environments, where 
rigidly predefined trajectories and control actions 
can lead to trajectory tracing errors or collisions. 
Dynamic variability sources of relevance to the issue 
are:
–  container that is mounted on the mobile base, its location is 
relative and determined by the position of the cleaning robot,
–  variations of the mass and centre of gravity of the container as a 
result of the insertion and unloading of the material,
–  and the shifting of its own centre of gravity due to manipulation 
with the decontamination robot.

These nonlinear and time-varying changes 
introduce significant uncertainty into the system's 
dynamics, which needs to be predicted and 
continuously adapted for the control strategy. To 
offer compensation for such changes, a sensor 
fusion architecture combining exteroceptive and 
proprioceptive information was employed. The 
sensing subsystem consists of a stereo camera with 
an inertial measurement unit mounted on the end 
effector (Fig. 3), motor encoder information, and drive 
torque estimation. This multi-sensor information 
provides real-time feedback to the model predictive 
control algorithm, updating iteratively control 
inputs to reflect dynamic variations and converge 
to the destination state under varying operating 
conditions.

Figure 1: Hot gas chamber [16]
The primary functions of this mobile robot will 

include: 
–  navigating through pipelines with an internal diameter of 380 
mm, 
–  inserting and extracting the decontamination robot from the hot 
gas chamber using a robotic manipulator arm, 
–  retrieving a sediment-filled container from the decontamination 
robot, performing emptying operations, and reinserting the emptied 
container back into the decontamination robot. Figure 3: End-effector
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3. Experimental Work
In this experiment, we use a basic simulation 

to demonstrate the possibility of creating MPC 
logic in MATLAB environment. In the simulation, 
we introduce random disturbances, which in real 
life would represent changes in the environment, 
potential collisions. Based on these disturbances, 
the MPC logic dynamically adapts the path so that 
the end-effector still reaches the intended final 
position. 

Since the experiment is conducted within 
the virtual environment, these external forces are 
artificially developed. Disturbance is modeled as 
random variation from the planned path, simulating, 
for example, a collision that can occur when taking 
out an insertable container. During experiment 
simulation we note the reaction of the system to 
these random changes and quantify the deviation 
between desired and actual path travelled. This 
deviation results from the dynamic characteristics 
of the system, influenced by mass, acceleration, and 
inertia.

To add more realism to the simulation, we 
defined maximum accelerations and velocities of 
actuators and various constraints. They are found 
from the robot's mechanical structure, such as limits 
of arm reach, and physical actuator parameters, 
which influence the dynamics of the system. In the 
experiment, we defined the following parameters:
–  robot arm lengths, initial positions, and joint angle range,
–  the maximum velocity and acceleration of each actuator.

Our final control structure combines the 
predictability of MPC with the local accuracy of 
Jacobian-based IK. The MPC block produces a 
smooth reference path, say a circle, as well as 
compensates for disturbances or infeasible points. 
The IK block transforms each reference point 
into joint angles and base positions via real-time 
Jacobian calculation. This method uses a Jacobian-
based numerical procedure that incorporates both 
arm joint motion and base translation in the inverse 
kinematics calculation.

The robot arms' movement is obtained by means 
of two rotary motors with ball screw mechanisms 
connected to each arm.  First arm is red, and second 
arm is blue (Fig.4). Figure 4 also shows the base 
(which is shaded grey) moving in the x-axis on a 
wheeled platform. The angular movement of the 
two motors is related to the linear translation of the 
actuator by the screw pitch. Turning the first motor, 

that of the red arm, we change angle q1, and turning 
the second motor, that of the blue arm, we change 
angle q2.

Figure 4: Simplified diagram of the robot model
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In our setup, the robot follows a reference 
trajectory, which can be any predefined path such 
as a circle, a straight line, or a spline-based curve. 
The MPC continuously recalculates the optimal 
movement based on possible changes in this 
target path. To simulate real-world conditions, 
random deviations are applied during the motion 
to represent environmental changes or real-time 
updates from sensors. However, these changes are 
disabled in the initial and final parts of the motion 
to avoid large deviations at the start or end of the 
trajectory.

At each control step, the MPC algorithm takes 
the robot’s current position and computes a short-
term movement plan that moves the end-effector 
closer to the desired trajectory while respecting 
various system constraints. These constraints 
include limits on joint angles, maximum speed of 
the actuators, and maximum acceleration of both 
the robot’s base and its arm joints. Once the optimal 
short-term plan is found, only the first movement is 
executed. The process is then repeated at the next 
time step, considering any new information about 
the robot’s state or the target.

The MATLAB implementation runs a real-time 
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optimization loop using the “fmincon” solver. This 
solver tries to minimize a single numerical value 
called the scalar cost [17]. The scalar cost is a number 
that represents how “good” a particular movement 
option is. A low cost means the movement is close 
to the target path, respects the reference trajectory, 
and avoids obstacles. A high cost means one or 
more of these goals are not being met.

In our case, this scalar cost is determined by 
three main factors:
–  tracking accuracy – how close the predicted end-effector position 
will be to the updated target point,
–  path adherence – how much the movement deviates from the 
original reference path,
–  obstacle avoidance – how far the movement keeps the end-
effector away from defined obstacles.

If a sudden change in the target trajectory 
occurs, the robot uses an adaptive slowdown 
mechanism. This means it automatically reduces 
its maximum speed and acceleration when large 
corrections are required. This prevents overshooting 
and helps the robot maintain stability, even during 
aggressive trajectory changes.

For example, if an obstacle is detected during 
motion, the MPC increases the penalty for moving 
near the obstacle, causing the optimizer to choose 
a detour. Once the obstacle is gone, the path 
adherence term gradually brings the motion back 
toward the reference trajectory. This entire process 
happens in real time, ensuring that the robot adapts 
smoothly without stopping or recalculating the 
entire path from scratch.

In our system, the robot follows a reference 
path, any pre-specified path such as a circle, line, or 
spline-curves. The Model Predictive Control (MPC) 
continuously re-computes optimum motion from 
possible variations in this target path. For real-world 
imitation purposes, random disturbances are added 
in most of the motion to reproduce environmental 
noise or sensor updates in real time. 

4. Results and Discussion
The MATLAB simulation produces a series of 

plots representing the motion of the robot, control 
performance, and system dynamics. Figure 5 
indicates to us that we can plot the paths. The paths 
were designed using a MATLAB script and illustrate 
the individual trajectories that were executed by 
the tip of the end effector. In the figure 5, we can 
see a blue circle that represents the ideal trajectory 

we wanted to perform. The orange dashed line 
shows the optimized path obtained based on the 
MPC logic. The green line shows the executed path. 
In the figure 5, we can see that the real system did 
not necessarily follow the MPC trajectory, due to the 
ratio of the system's dynamics and speed of random 
change. The green trajectory has small but repeated 
oscillations, primarily in the lower-left region of the 
circle, because of random reference disturbances 
and mechanical limitations on base and joint 
accelerations.

 

 
Figure 5: Comparison between different trajectories

The difference between MPC trajectory and 
executed trajectory plot (Fig.6) shows the magnitude 
of the deviation between the MPC setpoint and the 
executed trajectory. Low, constant values indicate 
precise tracking, and sudden spikes are indicative 
of rapid path switching or large disturbances. In 
our experiments, a typical steady-state error was 
within the range of a few millimetres, but in the case 
of severe disturbances, the errors would increase 
significantly if acceleration bounds were saturated.

Angular velocities of the first joint (ω₁, red line) 
and the second joint (ω₂, blue line) of the robot arm 
are represented in figure 7. Smooth and low values 
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indicate that the arm movement are stable and not 
jerky. Sudden angular velocity peaks indicate rapid 
direction changes or stiff reaction to large trajectory 
disturbances that might cause greater mechanical 
wear or likelihood of breaching actuator acceleration 
limits. To ensure good quality of control, the curves 
should be very smooth with no sharp changes 
occurring too frequently, and their values should 
not exceed the physical actuators' limits.

End-Effector Position in X and Y Coordinates 
shows how the end-effector position changes with 
time along both the X-axis (blue curve Fig.8) and 
Y-axis (red curve Fig.8). Smooth sinusoidal-like curves 
are expected when following a circular or other 
smooth trajectory. Large excursions or oscillations 

Figure 6: Difference between MPC trajectory and executed trajectory

Figure 7: Angular velocities

Figure 8: Endpoint position in X and Y Coordinates

Figure 9: External change / max reaction ratio

in either axis indicate disturbances, tracking error, or 
actuator limitations.

Dynamic ratio plot axis (Fig.9) measures the ratio 
of disturbance magnitude to the system’s maximum 
possible correction in one control step. Less than 
1 indicates that the system can easily follow the 
disturbances. Greater than 1 indicates that the 
disturbance change occurred faster than the robot's 
reaction ability. 

We can see from the charts that our Matlab 
optimization model has errors and needs to be 
adjusted to be use in the assistance robot. The 
tracking error between the executed trajectory 
and the mpc-planned path can be solved through 
several strategies. Some solutions try to improve 
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robot’s physical performance, and others try to 
improve control algorithms and trajectory planning. 
Improving the dynamic capabilities of the robot. 
Possible solutions that could reduce the deviation 
and errors are listed below.
–  Improvement in the MPC Controller, higher position error penalty 
in the cost function, with greater priority on precise tracking versus 
low control effort. Jerk penalty or acceleration change penalty to avoid 
abrupt change in velocity and give smoother control action. Adaptive 
prediction horizon — longer horizon for steady motion and shorter 
horizon for high-speed disturbances, balancing responsiveness and 
stability.
–  MPC trajectory filtering, applying a low-pass filter to remove high-
frequency noise before the trajectory is fed into the MPC. Applying a 
moving average filter or Bézier spline smoothing to allow the path to 
transition smoothly.

Because we test MPC only in a virtual 
environment, in my future work I will focus on 
integrating Matlab with Webots. We can use the 
Webots platform to simulate and send signals to a 
real robot and also to create a digital twin. by this 
achieve reliable semi-autonomous control of an 
assistance service robot.

5. Conclusions 
The combination of Model Predictive Control 

with Jacobian-based Inverse Kinematics was 
effective for smooth, adaptive trajectory generation 
of a mobile robotic platform in dynamically changing 
environments. Simulation results verify that the 
control approach can ensure tracking precision 
under moderate disturbances while adhering to 
actuator limits. The deviations experienced under 
severe disturbances point towards the necessity of 
further optimizing the MPC cost function through 
higher position error penalties, jerk minimization, 
and adaptive prediction horizons. From the results, 
we found that the MPC model still needs to be 
tuned before it can be used to control an assistance 
robot. The main problem is oscillations which could 
also be alleviated and control stability improved 
through trajectory smoothing techniques such 
as low-pass filtering or spline fitting. Although 
the current study was restricted to MATLAB 
simulation, the methodology has prospects for real-
world application in hazardous and inaccessible 
environments, including decontamination of hot 
gas chambers. Future research efforts will involve 
the incorporation of the control algorithm within 
the Webots environment for enabling digital twin 

development, semi-autonomous operation, and 
validation of the methodology on the physical 
robot system.
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