
54 VOLUME 29, No. 3, 2025 * Corresponding author: Patrik Pilát, E-mail address: patrik.pilat@tuke.sk

Acta Mechanica Slovaca 29 (3): 54 - 60, September 2025
https://doi.org/10.21496/ams.2025.023

Acta Mechanica Slovaca
ISSN 1335-2393

www.actamechanica.sk

Path Optimization of a Mobile Robot Platform
with a Robotic Arm

Patrik Pilát 1,*, Jozef Varga 1, Ján Semjon 2, Matúš Sabol 2

1	 Prototyping and Innovation centre, Faculty of Mechanical Engineering, Technical University of Košice, Faculty of Mechanical Engineering, Slovakia
2	 Department of Production Technology and Robotics, Technical University of Košice, Faculty of Mechanical Engineering, Slovakia

Abstract: This paper presents the development and simulation of a path optimization approach
for a mobile assistive service robot equipped with a robotic manipulator arm to operate in hot
gas chamber. The proposed control architecture integrates Model Predictive Control (MPC)
with Jacobian-based Inverse Kinematics (IK) for enabling smooth, adaptive motion planning
even under dynamically changing environmental conditions. A Matlab based simulation setup
was used to verify the control approach using random disturbances to simulate real-world
complications like payload mass variations, centre of gravity shifts, and obstacle interference.
Results show that MPC adapts trajectories in real time. However, actuator constraints and very
sudden changes in the environment could lead to increased deviations. Future improvements
include refining the MPC cost function, introducing adaptive prediction horizons, and employing
trajectory filtering to improve robustness. The presented approach forms a basis for future work
on physical robots, with plans for implementation in the Webots simulation environment for
digital twin creation and validation of semi-autonomous control.

Keywords: inverse kinematic; model predictive control; mobile service robot

1. Introduction

Mobile service robots are frequently employed in unstructured, uncertain, and
incontinently continuously varying environments, e.g., homes, public indoor spaces,
or warehouses [1],[2]. These are environments with limited knowledge, in which robots
need to operate without complete maps while reacting to unpredictable objects and
dynamic conditions like human individuals or mobile machinery [3],[4],[5]. To support
such movements, robots must localize themselves in real-time and modify their motion
according to immediate sensor feedback from LiDARs or cameras [6]. Moreover, moving
through environments also requires precision but also strong obstacle avoidance and
smooth adjustment of trajectory [1],[4],[7].

In that regard, Model Predictive Control (MPC) has been a powerful and
generic framework for autonomous robot navigation in unstructured and dynamic
environments. The inherent power of MPC is to predict the future trajectory of the
robot's state over a time horizon from a mathematical model and optimize control
action accordingly with velocity, acceleration, and workspace constraint [8],[9].
Compared to traditional controllers, MPC is more sensitive and flexible toward
environmental variation, and it is therefore suitable for real-time navigation in both
indoor and outdoor settings [10].

MPC is currently widely used in robotics, process control, and autonomous
vehicles due to its ability to be flexible and employ dynamic models and constraints
as a component of the control logic. Its strength comes from its capability to adapt
trajectories dynamically based on predictions of the future [11],[12].

AMS _3-2025.indd 54AMS _3-2025.indd 54 27. 11. 2025 10:46:4527. 11. 2025 10:46:45

Acta Mechanica Slovaca
Journal published by Faculty of Mechanical Engineering - Technical University of Košice

55

Another section discussed in this paper is the
kinematics of the robotic arm. Kinematics is the
study of motion without the forces responsible for it.
Forward kinematics in robotics is the calculation of
the position of the end-effector through known joint
variables — rotations or displacements, for example.
Conversely, inverse kinematics attempts to come
up with the joint settings necessary for a desired
position or orientation of the end-effector. While
forward kinematics is straightforward algebraic
mapping, inverse kinematics usually requires more
effort due to nonlinearities, redundant solutions,
and limited workspaces [13]. Inverse Kinematics (IK)
refers to the mathematical process of solving joint
angles that put a robot's end-effector at a desired
coordinate [14],[15].

2. Case Study
This MPC form will be used for custom-built

assistive service robot (Fig.2) control. The robot is a
special-purpose equipment that is designed to assist
during the decontamination process of a hot gas
chamber (Fig.1). This service robot was developed
specifically due to the extreme inaccessibility of the
chamber and radiation levels in the environment.
Consequently, the decontamination activities must
be performed using remotely operated robotic
equipment in semi-autonomous mode but with
the possibility of operator intervention from remote
locations if necessary.

Figure 2: Assistive service robot
The operation of these tasks occurs in highly

dynamic and unstructured environments, where
rigidly predefined trajectories and control actions
can lead to trajectory tracing errors or collisions.
Dynamic variability sources of relevance to the issue
are:
–  container that is mounted on the mobile base, its location is
relative and determined by the position of the cleaning robot,
–  variations of the mass and centre of gravity of the container as a
result of the insertion and unloading of the material,
–  and the shifting of its own centre of gravity due to manipulation
with the decontamination robot.

These nonlinear and time-varying changes
introduce significant uncertainty into the system's
dynamics, which needs to be predicted and
continuously adapted for the control strategy. To
offer compensation for such changes, a sensor
fusion architecture combining exteroceptive and
proprioceptive information was employed. The
sensing subsystem consists of a stereo camera with
an inertial measurement unit mounted on the end
effector (Fig. 3), motor encoder information, and drive
torque estimation. This multi-sensor information
provides real-time feedback to the model predictive
control algorithm, updating iteratively control
inputs to reflect dynamic variations and converge
to the destination state under varying operating
conditions.

Figure 1: Hot gas chamber [16]
The primary functions of this mobile robot will

include:
–  navigating through pipelines with an internal diameter of 380
mm,
–  inserting and extracting the decontamination robot from the hot
gas chamber using a robotic manipulator arm,
–  retrieving a sediment-filled container from the decontamination
robot, performing emptying operations, and reinserting the emptied
container back into the decontamination robot. Figure 3: End-effector

AMS _3-2025.indd 55AMS _3-2025.indd 55 27. 11. 2025 10:46:4527. 11. 2025 10:46:45

56 VOLUME 29, No. 3, 2025

3. Experimental Work
In this experiment, we use a basic simulation

to demonstrate the possibility of creating MPC
logic in MATLAB environment. In the simulation,
we introduce random disturbances, which in real
life would represent changes in the environment,
potential collisions. Based on these disturbances,
the MPC logic dynamically adapts the path so that
the end-effector still reaches the intended final
position.

Since the experiment is conducted within
the virtual environment, these external forces are
artificially developed. Disturbance is modeled as
random variation from the planned path, simulating,
for example, a collision that can occur when taking
out an insertable container. During experiment
simulation we note the reaction of the system to
these random changes and quantify the deviation
between desired and actual path travelled. This
deviation results from the dynamic characteristics
of the system, influenced by mass, acceleration, and
inertia.

To add more realism to the simulation, we
defined maximum accelerations and velocities of
actuators and various constraints. They are found
from the robot's mechanical structure, such as limits
of arm reach, and physical actuator parameters,
which influence the dynamics of the system. In the
experiment, we defined the following parameters:
–  robot arm lengths, initial positions, and joint angle range,
–  the maximum velocity and acceleration of each actuator.

Our final control structure combines the
predictability of MPC with the local accuracy of
Jacobian-based IK. The MPC block produces a
smooth reference path, say a circle, as well as
compensates for disturbances or infeasible points.
The IK block transforms each reference point
into joint angles and base positions via real-time
Jacobian calculation. This method uses a Jacobian-
based numerical procedure that incorporates both
arm joint motion and base translation in the inverse
kinematics calculation.

The robot arms' movement is obtained by means
of two rotary motors with ball screw mechanisms
connected to each arm. First arm is red, and second
arm is blue (Fig.4). Figure 4 also shows the base
(which is shaded grey) moving in the x-axis on a
wheeled platform. The angular movement of the
two motors is related to the linear translation of the
actuator by the screw pitch. Turning the first motor,

that of the red arm, we change angle q1, and turning
the second motor, that of the blue arm, we change
angle q2.

Figure 4: Simplified diagram of the robot model

Position Equations:

() ()10 1 2 1 2cos cosx x L Lθ θ θ= + + +

() ()1 1 2 1 20 sin siny L Lθ θ θ= + + +

()1

()2

Jacobian matrix (2x3):

() () ()
() () ()

1 1 2 1 2 2 1 2

1 1 2 1 2 2 1 2

sin sin sin 1

cos cos cos 0

L L L
J

L L L

θ θ θ θ θ

θ θ θ θ θ

 − − + − +
 =
 + + + 

()3

In our setup, the robot follows a reference
trajectory, which can be any predefined path such
as a circle, a straight line, or a spline-based curve.
The MPC continuously recalculates the optimal
movement based on possible changes in this
target path. To simulate real-world conditions,
random deviations are applied during the motion
to represent environmental changes or real-time
updates from sensors. However, these changes are
disabled in the initial and final parts of the motion
to avoid large deviations at the start or end of the
trajectory.

At each control step, the MPC algorithm takes
the robot’s current position and computes a short-
term movement plan that moves the end-effector
closer to the desired trajectory while respecting
various system constraints. These constraints
include limits on joint angles, maximum speed of
the actuators, and maximum acceleration of both
the robot’s base and its arm joints. Once the optimal
short-term plan is found, only the first movement is
executed. The process is then repeated at the next
time step, considering any new information about
the robot’s state or the target.

The MATLAB implementation runs a real-time

AMS _3-2025.indd 56AMS _3-2025.indd 56 27. 11. 2025 10:46:4527. 11. 2025 10:46:45

Acta Mechanica Slovaca
Journal published by Faculty of Mechanical Engineering - Technical University of Košice

57

optimization loop using the “fmincon” solver. This
solver tries to minimize a single numerical value
called the scalar cost [17]. The scalar cost is a number
that represents how “good” a particular movement
option is. A low cost means the movement is close
to the target path, respects the reference trajectory,
and avoids obstacles. A high cost means one or
more of these goals are not being met.

In our case, this scalar cost is determined by
three main factors:
–  tracking accuracy – how close the predicted end-effector position
will be to the updated target point,
–  path adherence – how much the movement deviates from the
original reference path,
–  obstacle avoidance – how far the movement keeps the end-
effector away from defined obstacles.

If a sudden change in the target trajectory
occurs, the robot uses an adaptive slowdown
mechanism. This means it automatically reduces
its maximum speed and acceleration when large
corrections are required. This prevents overshooting
and helps the robot maintain stability, even during
aggressive trajectory changes.

For example, if an obstacle is detected during
motion, the MPC increases the penalty for moving
near the obstacle, causing the optimizer to choose
a detour. Once the obstacle is gone, the path
adherence term gradually brings the motion back
toward the reference trajectory. This entire process
happens in real time, ensuring that the robot adapts
smoothly without stopping or recalculating the
entire path from scratch.

In our system, the robot follows a reference
path, any pre-specified path such as a circle, line, or
spline-curves. The Model Predictive Control (MPC)
continuously re-computes optimum motion from
possible variations in this target path. For real-world
imitation purposes, random disturbances are added
in most of the motion to reproduce environmental
noise or sensor updates in real time.

4. Results and Discussion
The MATLAB simulation produces a series of

plots representing the motion of the robot, control
performance, and system dynamics. Figure 5
indicates to us that we can plot the paths. The paths
were designed using a MATLAB script and illustrate
the individual trajectories that were executed by
the tip of the end effector. In the figure 5, we can
see a blue circle that represents the ideal trajectory

we wanted to perform. The orange dashed line
shows the optimized path obtained based on the
MPC logic. The green line shows the executed path.
In the figure 5, we can see that the real system did
not necessarily follow the MPC trajectory, due to the
ratio of the system's dynamics and speed of random
change. The green trajectory has small but repeated
oscillations, primarily in the lower-left region of the
circle, because of random reference disturbances
and mechanical limitations on base and joint
accelerations.

Figure 5: Comparison between different trajectories

The difference between MPC trajectory and
executed trajectory plot (Fig.6) shows the magnitude
of the deviation between the MPC setpoint and the
executed trajectory. Low, constant values indicate
precise tracking, and sudden spikes are indicative
of rapid path switching or large disturbances. In
our experiments, a typical steady-state error was
within the range of a few millimetres, but in the case
of severe disturbances, the errors would increase
significantly if acceleration bounds were saturated.

Angular velocities of the first joint (ω₁, red line)
and the second joint (ω₂, blue line) of the robot arm
are represented in figure 7. Smooth and low values

AMS _3-2025.indd 57AMS _3-2025.indd 57 27. 11. 2025 10:46:4527. 11. 2025 10:46:45

58 VOLUME 29, No. 3, 2025

indicate that the arm movement are stable and not
jerky. Sudden angular velocity peaks indicate rapid
direction changes or stiff reaction to large trajectory
disturbances that might cause greater mechanical
wear or likelihood of breaching actuator acceleration
limits. To ensure good quality of control, the curves
should be very smooth with no sharp changes
occurring too frequently, and their values should
not exceed the physical actuators' limits.

End-Effector Position in X and Y Coordinates
shows how the end-effector position changes with
time along both the X-axis (blue curve Fig.8) and
Y-axis (red curve Fig.8). Smooth sinusoidal-like curves
are expected when following a circular or other
smooth trajectory. Large excursions or oscillations

Figure 6: Difference between MPC trajectory and executed trajectory

Figure 7: Angular velocities

Figure 8: Endpoint position in X and Y Coordinates

Figure 9: External change / max reaction ratio

in either axis indicate disturbances, tracking error, or
actuator limitations.

Dynamic ratio plot axis (Fig.9) measures the ratio
of disturbance magnitude to the system’s maximum
possible correction in one control step. Less than
1 indicates that the system can easily follow the
disturbances. Greater than 1 indicates that the
disturbance change occurred faster than the robot's
reaction ability.

We can see from the charts that our Matlab
optimization model has errors and needs to be
adjusted to be use in the assistance robot. The
tracking error between the executed trajectory
and the mpc-planned path can be solved through
several strategies. Some solutions try to improve

AMS _3-2025.indd 58AMS _3-2025.indd 58 27. 11. 2025 10:46:4627. 11. 2025 10:46:46

Acta Mechanica Slovaca
Journal published by Faculty of Mechanical Engineering - Technical University of Košice

59

robot’s physical performance, and others try to
improve control algorithms and trajectory planning.
Improving the dynamic capabilities of the robot.
Possible solutions that could reduce the deviation
and errors are listed below.
–  Improvement in the MPC Controller, higher position error penalty
in the cost function, with greater priority on precise tracking versus
low control effort. Jerk penalty or acceleration change penalty to avoid
abrupt change in velocity and give smoother control action. Adaptive
prediction horizon — longer horizon for steady motion and shorter
horizon for high-speed disturbances, balancing responsiveness and
stability.
–  MPC trajectory filtering, applying a low-pass filter to remove high-
frequency noise before the trajectory is fed into the MPC. Applying a
moving average filter or Bézier spline smoothing to allow the path to
transition smoothly.

Because we test MPC only in a virtual
environment, in my future work I will focus on
integrating Matlab with Webots. We can use the
Webots platform to simulate and send signals to a
real robot and also to create a digital twin. by this
achieve reliable semi-autonomous control of an
assistance service robot.

5. Conclusions
The combination of Model Predictive Control

with Jacobian-based Inverse Kinematics was
effective for smooth, adaptive trajectory generation
of a mobile robotic platform in dynamically changing
environments. Simulation results verify that the
control approach can ensure tracking precision
under moderate disturbances while adhering to
actuator limits. The deviations experienced under
severe disturbances point towards the necessity of
further optimizing the MPC cost function through
higher position error penalties, jerk minimization,
and adaptive prediction horizons. From the results,
we found that the MPC model still needs to be
tuned before it can be used to control an assistance
robot. The main problem is oscillations which could
also be alleviated and control stability improved
through trajectory smoothing techniques such
as low-pass filtering or spline fitting. Although
the current study was restricted to MATLAB
simulation, the methodology has prospects for real-
world application in hazardous and inaccessible
environments, including decontamination of hot
gas chambers. Future research efforts will involve
the incorporation of the control algorithm within
the Webots environment for enabling digital twin

development, semi-autonomous operation, and
validation of the methodology on the physical
robot system.

Acknowledgments
This research was supported by project VEGA: 1/0215/23 Research
and development of robotic workplaces equipped with industrial
and collaborative robots.

References
1.	 Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window

approach to reactive collision avoidance for mobile robots

with synchro‑drives (Tech. Rep.). Department of Computer

Science, University of Bonn; Robotics Institute, Carnegie

Mellon University.

2.	 Brock, O., & Khatib, O. (1999, May). High‑speed navigation

using the global dynamic window approach. In Proceedings

of the 1999 IEEE International Conference on Robotics and

Automation (p. 341). IEEE.

3.	 T. Qin, P. Li and S. Shen, "VINS-Mono: A Robust and

Versatile Monocular Visual-Inertial State Estimator," in IEEE

Transactions on Robotics, vol. 34, no. 4, pp. 1004-1020, Aug.

2018, doi: 10.1109/TRO.2018.2853729.

4.	 Wang et al., Navigating Mobile Robots in Unknown and

Dynamic Environments Using Deep Reinforcement

Learning, Scientific Reports (Nature), 2024

5.	 Khouili et al., A Perception-Aware MPC for Real-Time Mobile

Robot Navigation, MDPI Applied Sciences.

6.	 Lin et al., Real-Time Mapping and Path Planning for

Autonomous Robots, MDPI Sensors, 2023

7.	 Alatise & Hanheide, Challenges in Robot Deployment in

Real-World Environments, Robotics and Autonomous

Systems, 2021

8.	 Wu, X., Chen, S., Sreenath, K. S., & Mueller, M. W. (2022).

Perception-aware receding horizon trajectory planning for

multicopters with visual-inertial odometry (IEEE Access, 10,

65 507–65 519).

9.	 Hsieh, C.-H., & Liu, J.-S. (2012, July 11–14). Nonlinear

model predictive control for wheeled mobile robot in

dynamic environment. In Proceedings of the 2012 IEEE/

ASME International Conference on Advanced Intelligent

Mechatronics (pp. 363–368). IEEE

10.	 Mohamed, I. S., Ali, M., & Liu, L. (2025). Chance‑Constrained

Sampling‑Based MPC for Collision Avoidance in Uncertain

Dynamic Environments (arXiv:2501.08520).

11.	 E. F. Camacho and C. Bordons, Model Predictive Control,

Springer, 2004.

12.	 H. Gao et al., "Distributed MPC for Cooperative Multi-Robot

Navigation,"

13.	 de Cos, C. R., Acosta, J. Á., & Ollero, A. (2020, March). Adaptive

AMS _3-2025.indd 59AMS _3-2025.indd 59 27. 11. 2025 10:46:4627. 11. 2025 10:46:46

60 VOLUME 29, No. 3, 2025

Integral Inverse Kinematics Control for Lightweight

Compliant Manipulators. IEEE Robotics and Automation

Letters, 5(2), Article PP(99):1-1.

14.	 A. Lunia, Inverse Kinematics – Modeling, Motion Planning,

and Control, Clemson University Open Textbook, Chapter 3.

15.	 “Mastering Inverse Kinematics in Robotics,” NumberAnalytics

blog, Jun. 23, 2025

16.	 Stubna m.; Pekar, A.; Moravek, J.; Spirko, M. "Decommissioning

Project of A1 Bohunice NPP," VUJE Trnava Inc., February

2002.

17.	 MathWorks, Optimization Toolbox – fmincon, The

MathWorks, Inc., 2024. [Online]. Available: https://www.

mathworks.com/help/optim/ug/fmincon.html

AMS _3-2025.indd 60AMS _3-2025.indd 60 27. 11. 2025 10:46:4827. 11. 2025 10:46:48

